Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (x 2023), pp. 1-x
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
@ $\mathbb{M} M$
(C) Research Institute for Basic

Science, Wonkwang University
http://ribs.wonkwang.ac.kr

Γ - BCH -algebras and their application to topology

J. I. Baek, Moin A. Ansari, Samy M. Mostafa, M. Cheong, K. Hur

Received 21 January 2024; Revised 5 March 2024; Accepted 26 March 2024

> ABSTRACT. In this paper, we define Γ - $B C H$-algebras as a subclass of Γ - $B C K$-algebras and study their various properties. Next, we propose the notion of Γ - $B C H$-ideals and discuss some of its properties. Finally, we deal with some topological structures on $\Gamma-B C H$-algebras.

2020 AMS Classification: $06 \mathrm{~F} 35,54 \mathrm{~B} 10,54 \mathrm{~B} 05$
Keywords: $\quad \Gamma$ - $B C H$-algebra, Medial Γ - $B C H$-algebra, Γ - $B C H$-ideal, Quotient Γ - BCH -algebra, Left mapping, Semitopological Γ - BCH -algebra.

Corresponding Author: Moin A. Ansari (maansari@jazanu.edu.sa), M. Cheong (poset@kau.ac.kr)

1. Introduction

The exploration and development of algebraic structures have been a cornerstone in the advancement of both theoretical and applied mathematics. The introduction of $B C K$-algebras by Iséki and Tanaka [1] in 1978 marked a significant milestone in this journey, providing a framework that has since been extended and refined through concepts like BCI-algebras (Iséki, [2]), BCC-algebras (Dudek, [3] and Thomys, [4]), $Q S$-algebras (Ahn and Kim, [5]), Q-algebras (Neggers et al. [6]), BCH-algebras (Hu and $\mathrm{Li}[7]$) and $B E$-algebras (Kim and Kim [8]). These developments not only enriched the algebraic theory but also paved the way for applying algebraic structures to diverse fields such as topology and group theory. In particular, Jansi and Thiruveni $[9,10]$ applied $B C H$-algebras to topology and topological group (See $[11,12,13,14,15,16,17,18]$ for further researches).

Classical algebraic structures with Γ concept is another interest for most of the researchers in algebra one of them is Γ-Semirings introduced by Rao [19] and further studied by Kaushik and Moin [20]. Similar motivation comes from classical to logical algebras to study different structures using Γ concept. For example, Saeid et al. [21] introduced the concept of Γ - $B C K$-algebras as a generalization of $B C K$-algebras and investigated some of its properties. Shi et al. [22] redefined a Γ - $B C K$-algebra proposed by Saeid et al. [21] and studied its various properties. After then, Ibedou et
al. [23] studied topological structures on Γ - $B C K$-algebras. Shi et al. [24] proposed the notion of Γ - $B C I$-algebras as a generalization of $B C I$-algebras, and discussed some of its basic properties and some topological structures on Γ - $B C I$-algebras.

In this vein, our research aims to contribute to this evolving landscape by introducing the concept of Γ - BCH -algebras, a novel subclass within the realm of $\Gamma-B C I$-algebras. Our focus is not only on defining and elucidating the properties of $\Gamma-B C H$-algebras but also on exploring their application to topological structures. This dual emphasis on theoretical foundation and practical application reflects our broader objectives: to enrich the algebraic theory with new insights and to demonstrate the utility of these insights in understanding and solving complex problems in topology and beyond.

By defining Γ - BCH -ideals, the Γ-center, and the Γ-branch of a Γ - BCH -algebra, we aim to provide a comprehensive framework that extends the applicability of algebraic structures to topological concepts. Our investigation into the properties of quotient Γ - $B C H$-algebras and their topological properties is motivated by a desire to bridge the gap between abstract algebra and practical applications, fostering a deeper understanding of the underlying principles that govern both fields.

In summary, our research is driven by a commitment to advancing the frontiers of algebraic studies through the introduction of $\Gamma-B C H$-algebras and applying these structures within the domain of topology. Our goal is to provide a rich, theoretically sound foundation that not only adds to the algebraic discourse but also equips other researchers with new tools for exploring the interplay between algebra and topology, thus contributing to the broader scientific community's understanding of these fundamental concepts.

2. Preliminaries

We recall some definitions needed in next sections.
Definition 2.1 ($[1,2]$). Let X be a nonempty set with a constant 0 and a binary operation $*$. Consider the following axioms: for any $x, y, z \in X$,
$\left(\mathrm{A}_{1}\right)[(x * y) *(x * z)] *(z * y)=0$,
$\left(\mathrm{A}_{2}\right)[x *(x * y)] * y=0$,
(A $\left.\mathrm{A}_{3}\right) x * x=0$,
(A4) $x * y=0$ and $y * x=0$ imply $x=y$,
$\left(\mathrm{A}_{5}\right) 0 * x=0$,
$\left(\mathrm{A}_{6}\right)(x * y) * z=(x * z) * y$.
Then X is called a:
(i) BCI-algebra [2], if it satisfies axioms $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$,
(ii) $B C K$-algebra [1], if it satisfies axioms $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$,
(iii) $B C H$-algebra [7], if it satisfies axioms $\left(\mathrm{A}_{3}\right),\left(\mathrm{A}_{4}\right),\left(\mathrm{A}_{6}\right)$.

It is well-known that the followings hold (See [7]):
The class of BCK-alebras \subset The class of BCI-alebras \subset The class of BCH-alebras.
In $B C K / B C I / B C H$-algebra X, we define a binary operation \leq on X as follows: for any $x, y \in X$,

$$
x \leq y \text { if and only if } x * y=0 .
$$

Definition 2.2 ([7]). A $B C H$-algebra X is said to be proper, if it is not a $B C I$ algebra.
Definition 2.3 (See [7, 25]). A $B C I / B C H$-algebra X is said to be associative, if it satisfies the following condition:

$$
\begin{equation*}
(x * y) * z=x *(y * z) \text { for any } x, y, z \in X \tag{2.1}
\end{equation*}
$$

Definition 2.4 ([25]). A $B C I / B C H$-algebra X is said to be medial, if it satisfies the following condition:

$$
\begin{equation*}
(x * y) *(z * u)=(x * z) *(y * u) \text { for any } x, y, u, z \in X \tag{2.2}
\end{equation*}
$$

Definition 2.5 ([19]). Let X and Γ be two nonempty sets. Then X is called a Γ-semigroup, if there is a mapping $f: X \times \Gamma \times X \rightarrow X$, denoted by $f(x, \alpha, y)=x \alpha y$ for each $(x, \alpha, y) \in X \times \Gamma \times X$, such that it satisfies the following condition: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

$$
\begin{equation*}
x \alpha(y \beta z)=(x \alpha y) \beta z \tag{2.3}
\end{equation*}
$$

3. Basic properties of Γ - $B C H$-AlGEBRAS

In this section, we introduce the notions of Γ - BCH -algebras and medial Γ - BCH algebras, and study some of their properties.
Definition 3.1. Let X be a set with a constant 0 and let Γ be a nonempty set. Then X is called a Γ-algebra, if it is Γ-groupoid, i.e., there is a mapping $f: X \times \Gamma \times X \rightarrow X$, denoted by $f(x, \alpha, y)=x \alpha y$ for each $(x, \alpha, y) \in X \times \Gamma \times X$.
Definition 3.2. Let Γ-algebra X satisfy the following axioms: for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$,
$\left(\Gamma \mathrm{A}_{1}\right)[(x \alpha y) \beta(x \alpha z)] \beta(z \alpha y)=0$,
$\left(\Gamma \mathrm{A}_{2}\right)[x \alpha(x \beta y)] \alpha y=0$,
$\left(\Gamma \mathrm{A}_{3}\right)$ if $x \alpha y=0=y \alpha x$, then $x=y$,
$\left(\Gamma_{4}\right) x \alpha x=0$,
$\left(\Gamma \mathrm{A}_{5}\right) 0 \alpha x=0$,
$\left(\Gamma \mathrm{A}_{6}\right)(x \alpha y) \beta z=(x \alpha z) \beta y$.
Then X is called a:
(i) Γ - $B C K$-algebra [22], if it satisfies the axioms $\left(\Gamma \mathrm{A}_{1}\right)-\left(\Gamma \mathrm{A}_{5}\right)$,
(ii) Γ-BCI-algebra [24], if it satisfies the axioms $\left(\Gamma \mathrm{A}_{1}\right)-\left(\Gamma \mathrm{A}_{4}\right)$,
(iii) Γ - $B C H$-algebra, if it satisfies the axioms $\left(\Gamma \mathrm{A}_{3}\right),\left(\Gamma \mathrm{A}_{4}\right),\left(\Gamma \mathrm{A}_{6}\right)$.

For a Γ - $B C K / B C I / B C H$-algebra X and a fixed $\alpha \in \Gamma$, we define the operation $*: X \times X \rightarrow X$ as follows: for any $x, y \in X$,

$$
x * y=x \alpha y
$$

Then it is clear $(X, *, 0)$ is a $B C K / B C I / B C H$-algebra and is denoted by X_{α}.
Example 3.3. (1) Let $\Gamma=\{\alpha, \beta, \gamma\}$ and $X=\{0,1,2\}$ be a set with the ternary operation defined as the following table:
Then clearly, X is a Γ - $B C H$-algebra.
(2) Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3\}$ be a set with the ternary operation defined as the following table:
Then we can easily check that X is a Γ - $B C H$-algebra.

α	0	1	2	β	0	1	2	γ	0	1	2
0	0	0	2	0	0	1	1	0	0	2	2
1	1	0	2	1	1	0	1	1	1	0	2
2	2	1	0	2	2	1	0	2	2	2	0

α	0	1	2	3	
0	0	0	0	0	
1	1	0	3	3	
2	2	0	0	2	
3	3	0	0	0	
Table 3.2					
β	0	1	2	3	
0	0	0	0	0	
1	1	0	0	3	
2	2	3	0	3	
3	0	0	0		

(3) Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3\}$ be a set with the ternary operation defined as the following table:

α	0	1	2	3						
0	0	0	0	3						
1	1	0	1	3						
2	2	2	0	3						
3	3	3	3	0		β	0	1	2	3
:---:	:---:	:---:	:---:	:---:						
0	0	0	0	3						
1	1	0	3	2						
2	2	3	0	3						
3	3	3	3	0						

Table 3.3
Then clearly, X is a Γ - $B C H$-algebra.
The followings are immediate consequences of Definition 3.2 (iii).
Lemma 3.4. Let X be a Γ - $B C H$-algebra. Then the axiom $\left(\Gamma \mathrm{A}_{2}\right)$ holds.
The following is an immediate consequence of Definition 3.2 and Lemma 3.4.
Corollary 3.5. Every Γ-BCH-algebra satisfying the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ is a Γ - $B C I$ algebra
Lemma 3.6. Let X be a Γ-BCH-algebra. Then the following condition hold:
for each $x \in X$ and each $\alpha \in \Gamma, x \alpha 0=0$ implies $x=0$.
Thus the following condition hold:

$$
\begin{equation*}
x \alpha 0=x \text { for each } x \in X \text { and each } \alpha \in \Gamma \tag{3.2}
\end{equation*}
$$

Proof. The proof is straightforward from Definition 3.2.
The following is an immediate consequence of Definition 3.2 (ii) and (iii).
Proposition 3.7. Every Γ-BCI-algebra is a Γ-BCH-algebra. But the converse is not true (See Example 3.8).

Example 3.8. Let X be the Γ - $B C H$-algebra given in Example 3.3 (2). Then

$$
[(2 \alpha 3) \beta(2 \alpha 1)] \beta(1 \alpha 3)=(2 \beta 0) \beta 3=2 \beta 3=3 \neq 0
$$

Thus the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ does not hold. So X is not a Γ - $B C I$-algebra

Proposition 3.9. Let X be a Γ - $B C H$-algebra. Then the following identity:

$$
\begin{equation*}
(x \alpha y) \beta x=0 \beta y \text { for any } x, y \in X \text { and any } \alpha, \beta \in \Gamma . \tag{3.3}
\end{equation*}
$$

Proof. The proof follows from the axioms $\left(\Gamma \mathrm{A}_{6}\right)$ and $\left(\Gamma \mathrm{A}_{4}\right)$.
The followings are immediate consequences of Proposition 3.9.
Corollary 3.10. Let X be a Γ-BCH-algebra. Then the following identities:

$$
\begin{equation*}
(0 \alpha x) \beta 0=0 \beta x, \quad(x \alpha 0) \beta x=0 \text { for each } x \in X \text { and any } \alpha, \beta \in \Gamma . \tag{3.4}
\end{equation*}
$$

Proposition 3.11. Let X be a Γ - $B C H$-algebra. Then the following identity:

$$
\begin{equation*}
0 \alpha(x \beta y)=(0 \alpha x) \beta(0 \alpha y) \text { for any } x, y \in X \text { and any } \alpha, \beta \in \Gamma . \tag{3.5}
\end{equation*}
$$

Proof. Let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

$$
\begin{aligned}
0 \alpha(x \beta y) & =[(0 \alpha y) \beta(x \beta y)] \alpha(0 \alpha y)\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{6}\right)\right] \\
& =[((x \beta y) \alpha x) \beta(x \beta y)] \beta[(x \beta y) \alpha x] \\
& =[(((x \beta y) \alpha(x \beta y)) \alpha x] \beta[(x \beta x) \alpha y][\text { By the condition }(3.3)] \\
& =(0 \alpha x) \beta(0 \alpha y) .\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{4}\right)\right]
\end{aligned}
$$

Thus the condition (3.4) holds.
Proposition 3.12. Let X be a Γ - $B C H$-algebra. Then the following identity:

$$
\begin{equation*}
0 \alpha(0 \beta(0 \alpha x))=0 \alpha x \text { for each } x \in X \text { and any } \alpha, \beta \in \Gamma \tag{3.6}
\end{equation*}
$$

Proof. From the axiom $\left(\Gamma \mathrm{A}_{6}\right)$, we get

$$
\begin{equation*}
[0 \alpha(0 \beta(0 \alpha x))] \beta(0 \alpha x)=0 \tag{3.7}
\end{equation*}
$$

On the other hand, we get

$$
\begin{aligned}
(0 \alpha x) \beta[0 \alpha(0 \beta(0 \alpha x))] & =[0 \alpha(0 \beta(0 \alpha x))] \beta[0 \alpha(0 \beta(0 \alpha x))][\mathrm{By}(3.7)] \\
& =0 .\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{4}\right)\right]
\end{aligned}
$$

Thus by the axiom $\left(\Gamma \mathrm{A}_{3}\right)$, the identity (3.6) holds.
We have a characterization of Γ - BCH -algebras.
Theorem 3.13. Let X be $a \Gamma$-algebra. Then X is $a \Gamma$ - $B C H$-algebra if and only if it satisfies the axioms $\left(\Gamma \mathrm{A}_{3}\right),\left(\Gamma \mathrm{A}_{4}\right)$ and the following condition:

$$
\begin{equation*}
[(x \alpha y) \beta z] \alpha[(x \alpha z) \beta y]=0 \text { for any } x, y, z \in X \text { and any } \alpha, \beta \in \Gamma \tag{3.8}
\end{equation*}
$$

Proof. Suppose X is a Γ - $B C H$-algebra. Since the axioms $\left(\Gamma \mathrm{A}_{3}\right)$ and $\left(\Gamma \mathrm{A}_{4}\right)$ hold, it is sufficient to prove that the condition (3.8) holds. Let $x, y, z \in X$ and let $\alpha, \beta \in \gamma$. Then by the axioms $\left(\Gamma \mathrm{A}_{6}\right)$ and $\left(\Gamma \mathrm{A}_{4}\right)$, we get

$$
[(x \alpha y) \beta z] \alpha[(x \alpha z) \beta y]=[(x \alpha y) \beta z] \alpha[(x \alpha y) \beta z]=0 .
$$

Thus the condition (3.8) holds.
Conversely, suppose the axioms $\left(\Gamma \mathrm{A}_{3}\right),\left(\Gamma \mathrm{A}_{4}\right)$ and the condition (3.8) hold.
In Γ - $B C K / B C I / B C H$-algebra X, we define a binary operation \leq on X as follows: for any $x, y \in X$ and each $\alpha \in \Gamma$,
$x \leq y$ if and only if $x \alpha y=0$.

Proposition 3.14. Let X be a Γ-BCH-algebra. Then the followings hold: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,
(1) $x \leq y, y \leq x$ imply $x=y$,
(2) $x \leq x$.

Proof. The proofs are straightforward from Definition 3.2 (iii).
Definition 3.15. A Γ - $B C H$-algebra X is said to be proper, if it is not a Γ - $B C I$ algebra.

Remark 3.16. From Example 3.8, we can easily see that there is a proper Γ - $B C H$ algebra.

The following provides criteria for determining whether Γ - $B C H$-algebra is proper or not.

Theorem 3.17. A Γ-BCH-algebra X is proper if and only if the axioms $\left(\Gamma \mathrm{A}_{1}\right)$ does not hold.

Proof. The proof is straightforward.
Definition 3.18. A Γ - $B C I / B C H$-algebra X is said to be associative, if it is Γ semigroup, i.e., the following condition holds:

$$
\begin{equation*}
(x \alpha y) \beta z=x \alpha(y \beta z) \text { for any } x, y, z \in X \text { and any } \alpha, \beta \in \Gamma \tag{3.9}
\end{equation*}
$$

It is obvious that if X is an associative Γ - $B C I / B C H$-algebra, then for each $\alpha \in \Gamma$, X_{α} is an associative $B C I / B C H$-algebra.

Proposition 3.19. Every associative Γ - $B C H$-algebra is an associative Γ - $B C I$ algebra.

Proof. Let X be an associative Γ - $B C H$-algebra. From Lemma 3.4, it is sufficient to show that the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ holds. Let $x, y, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we get

$$
\begin{aligned}
{[(x \alpha y) \beta(x \alpha z)] \beta(z \alpha y) } & =[(x \alpha y) \beta x] \alpha[(z \beta z) \alpha y][\mathrm{By}(3.5)] \\
& =[(x \alpha x) \beta y] \alpha[(z \alpha z) \beta y]\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{6}\right)\right] \\
& =(0 \beta y) \alpha(0 \beta y)\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{3}\right)\right] \\
& =0
\end{aligned}
$$

Thus the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ holds. So X is an associative Γ - $B C I$-algebra.
The following is an immediate consequence of Definition 3.18 and Proposition 3.19.

Corollary 3.20. If X is an associative Γ - $B C H$-algebra, then for each $\alpha \in \Gamma, X_{\alpha}$ is an associative BCH-algebra and thus an associative BCI-algebra.

Definition 3.21. A $\Gamma-B C I / B C H$-algebra X is said to be medial, if it satisfies the following condition holds:

$$
\begin{equation*}
(x \alpha y) \beta(z \alpha u)=(x \alpha z) \beta(y \alpha u) \text { for any } x, y, u, z \in X \text { and any } \alpha, \beta \in \Gamma \tag{3.10}
\end{equation*}
$$

It is clear that if X is a medial Γ - $B C I / B C H$-algebra, then for each $\alpha \in \Gamma, X_{\alpha}$ is a medial $B C I / B C H$-algebra.
Proposition 3.22. Every medial Γ-BCH-algebra is a medial Γ - $B C I$-algebra.

Proof. Let X be a medial Γ - $B C H$-algebra. It is sufficient to prove that the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ holds. Let $x, y, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we get

$$
\begin{aligned}
{[(x \alpha y) \beta(x \alpha z)] \beta(z \alpha y) } & =[(x \alpha y) \beta(z \alpha y)] \beta(x \alpha z)\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{6}\right)\right] \\
& =[(x \alpha z) \beta(y \alpha y)] \beta(x \alpha z)[\text { By }(3.10)] \\
& =[(x \alpha z) \beta 0] \beta(x \alpha z)\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{4}\right)\right] \\
& =(x \alpha z) \beta(x \alpha z)[\text { By Lemma 3.6] } \\
& =0 .\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{4}\right)\right]
\end{aligned}
$$

Thus the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ holds. So X is a medial Γ - $B C I$-algebra.
The following is an immediate consequence of Definition 3.21 and Proposition 3.22.

Corollary 3.23. If X is a medial Γ - $B C H$-algebra, then for each $\alpha \in \Gamma, X_{\alpha}$ is a medial BCH-algebra and thus a medial BCI-algebra.

We give a characterization of medial Γ - BCH -algebras.
Theorem 3.24. A Г-BCH-algebra is medial if and only if it satisfies one of the following conditions: for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$,

$$
\begin{gather*}
x \alpha y=0 \beta(y \alpha x), \tag{3.11}\\
x \alpha(y \beta z)=z \alpha(y \beta x) \tag{3.12}\\
x \alpha(x \beta y)=y, \tag{3.13}\\
0 \alpha(0 \beta y)=y . \tag{3.14}
\end{gather*}
$$

Proof. Suppose X is a medial Γ - $B C H$-algebra, and let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then by Lemma 3.6, the axiom ($\Gamma \mathrm{A}_{4}$) and (3.10), we have

$$
x \alpha y=(x \alpha y) \beta 0=(x \alpha y) \beta(x \alpha x)=(x \alpha x) \beta(y \alpha x)=0 \beta(y \alpha x) .
$$

Thus the condition (3.11) holds.
Now suppose the condition (3.11) holds, let $x, y, z \in X$ and let $\alpha, \beta \in \gamma$. Then by (3.11) and the axiom $\left(\Gamma \mathrm{A}_{6}\right)$, we get

$$
(x \alpha y) \beta z=0 \beta[(y \alpha z) \beta x]=0 \beta[(y \alpha x) \beta z]=z \alpha(y \beta x) .
$$

Thus the condition (3.12) holds. It is clear that $[x \alpha(x \beta y)] \beta y=0$. On the other hand, $y \beta[x \alpha(x \beta y)]=0 \beta[(x \alpha(x \beta y)) \beta y]=0$. By the axiom $\left(\Gamma A_{3}\right), x \alpha(x \beta y)=y$. So the condition (3.13) holds. the condition (3.12) follows from the condition (3.13).

Finally suppose the condition (3.14) holds, let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

$$
\begin{aligned}
x \alpha y & =0 \alpha[0 \alpha(x \beta y)][\text { By the hypothesis }] \\
& =0 \alpha[(0 \alpha x) \beta(0 \alpha y)][\text { By }(3.5)] \\
& =0 \alpha[(0 \alpha(0 \alpha y)) \beta x]\left[\text { By the axiom }\left(\Gamma \mathrm{A}_{6}\right)\right] \\
& =0 \alpha(y \beta x) . \text { By the hypothesis }]
\end{aligned}
$$

Thus the condition (3.11) holds.
Conversely, suppose the necessary condition (3.12) holds, let $x, y, u, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

$$
u \alpha[z \beta(x \alpha y)]=u \alpha[y \varepsilon(x \alpha z)]=(x \alpha z) \beta(y \alpha u) .
$$

Since $u \alpha[z \beta(x \alpha y)]=(x \alpha y) \beta(z \alpha u),(x \alpha y) \beta(z \alpha u)=(x \alpha z) \beta(y \alpha u)$. Thus the condition (3.10) holds. So X is medial.

4. Γ - $B C H$-ideals of Γ - $B C H$-algebras

In this section, we define a Γ - $B C H$-ideal, the Γ-center and the Γ-branch of a Γ - BCH -algebra, and deal with some of their properties

Definition 4.1 (See [24]). Let X be a Γ - $B C I / B C H$-algebra and let S be a nonempty subset of X. Then S is called a Γ-subalgebra of X, if S itself is a Γ - $B C I / B C H$ algebra.

It is obvious that X and $\{0\}$ are Γ-subalebras of X. In this case, X and $\{0\}$ will be called the trivial Γ-subalgebras of X. A nonempty subset S is called a proper Γ-subalgebra of X, if S is a Γ-subalgebra of X and $S \varsubsetneqq X$. It is clear that $\{0\}$ is a proper Γ-subalgebra of X.

From Definition 4.1, we obtain easily the following.
Theorem 4.2 (See Theorem 3.25, [24]). Let X be a Γ-BCI/BCH-algebra and let S be a nonempty subset of X. Then S is a Γ-subalgebra of X if and only if $x \alpha y \in X$ for any $x, y \in S$ and each $\alpha \in \Gamma$.

Definition 4.3 (See [24]). Let X be a Γ - $B C I / B C H$-algebra and let I be a nonempty subset of X. Then I is called a Γ - $B C H$-ideal of X, if it satisfies the following conditions: for any $x, y \in X$ and $\alpha \in \Gamma$,
$\left(\Gamma_{1}\right) 0 \in I$,
($\Gamma \mathrm{I}_{2}$) if $x \alpha y \in I$ and $y \in I$, then $x \in I$.
We will denote the set of all $\Gamma-B C H$-ideals of X by $\Gamma \mathcal{I}(X)$.
Example 4.4. (1) Let X be the Γ - $B C H$-algebra given in Example 3.3 (2). Then clearly, $\{0,1\}$ is a Γ-subalgebra of X but $\{0,1\} \notin \Gamma \mathcal{I}(X)$ since $2 \alpha 1 \in\{0,1\}$ and $1 \in\{0,1\}$ but $2 \notin\{0,1\}$.
(2) Let X be the $\Gamma-B C I$-algebra given in Example 3.3 (3). Then we can see that

$$
\{0,1\},\{0,2\}, \quad\{0,3\} \in \Gamma \mathcal{I}(X)
$$

However, $\{0,1,2\} \notin \Gamma \mathcal{I}(X)$ because $3 \beta 2=2 \in\{0,1,2\}$ and $2 \in\{0,1,2\}$ but $3 \notin\{0,1,2\}$.

Definition 4.5 (See [24]). Let X be a Γ - $B C I / B C H$-algebra X and let $I \in \Gamma \mathcal{I}(X)$. Then I is called a closed Γ-BCH-ideal of X, if $x \in I$ implies $0 \alpha x \in I$ for each $\alpha \in \Gamma$.

We will denote the set of all closed Γ-ideals of X by $\Gamma \mathcal{I}_{c}(X)$.
Example 4.6. Let X be the Γ - $B C H$-algebra given in Example 3.3 (2). The we can check that $\{0,1\} \in \Gamma \mathcal{I}_{c}(X)$ but $\{0,2\} \notin \Gamma \mathcal{I}_{c}(X)$ because $2 \in\{0,2\}$ and $\{0,2\} \in$ $\Gamma \mathcal{I}(X)$ but $0 \beta 2=1 \notin\{0,2\}$.

Proposition 4.7 (See Proposition 4.10, [24]). Every closed Γ - $B C H$-ideal of $a \Gamma$ $B C H$-algebra X is a Γ-subalgebra of X. But the converse is not true.

Proof. Let I be a closed Γ - $B C H$-ideal of X. Since $0 \in I, I \neq \varnothing$. Let $x, y \in I$ and let $\alpha \in \Gamma$. Then $(x \alpha y) \beta x=(x \alpha x) \beta y=0 \beta y \in I$. Since $I \in \Gamma \mathcal{I}(X), x \alpha y \in I$. Thus I is a Γ-subalgebra of X.

Consider the Γ - $B C H$-algebra X given in Example 3.3 (2). Then $\{0,3\}$ is a Γ subalgebra of X but $\{0,3\} \notin \Gamma \mathcal{I}_{c}(X)$.

The following is a characterization of closed Γ-ideals.
Theorem 4.8 (See Theorem 4.11, [24]). Let X be $a \Gamma$-BCH-algebra and let I be a subset of X. Then $I \in \Gamma \mathcal{I}_{c}(X)$ if and only if it satisfies the following conditions: for any $x, y, z \in X$ and each $\alpha \in \Gamma$,
(1) $0 \in I$,
(2) $x \alpha z, y \alpha z, z \in I$ imply $x \alpha y \in I$.

Proof. The proof is similar to one of Theorem 4.11 in [24].
Definition 4.9. Let X be a Γ - $B C H$-algebra. Then the subset of X defined by:

$$
\{x \in X: 0 \alpha x=0 \text { for each } \alpha \in \Gamma\}
$$

is called a Γ - $B C A$-part of X and denoted by $\Gamma В \mathrm{BA}(X)$.
If X is a Γ - $B C K$-algebra, then the subset of X is called a $\Gamma-B C K$-part of X and denoted by Γ ВСК (X).

It is obvious that $\Gamma \mathrm{BCA}(X) \neq \varnothing$ and if X is a Γ - $B C I$-algebra, then $\Gamma \mathrm{BCA}(X)=$ $\Gamma \mathrm{BCK}(X)$.

Remark 4.10. $\Gamma \mathrm{BCA}(X)$ is not necessarily a Γ - $B C K$-algebra (See Example 4.11).
Example 4.11. Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3,4\}$ be a set with the ternary operation defined as the following table:

α	0	1	2	3	4							
0	0	0	0	0	4							
1	1	0	0	1	4							
2	2	2	0	0	4							
3	3	3	3	0	4							
4	4	4	4	4	0		β	0	1	2	3	4
:---:	:---:	:---:	:---:	:---:	:---:							
0	0	0	0	0	4							
1	1	0	0	2	4							
2	2	2	0	0	4							
3	3	3	3	0	4							
4	4	4	4	4	0							

Table 4.1

Then clearly, X is a Γ - $B C H$-algebra and $\Gamma B C A(X)=\{0,1,2,3\}$. On the other hand,

$$
[(1 \alpha 3) \beta(1 \alpha 2)] \beta(2 \alpha 3)=1 \neq 0
$$

Thus the axiom $\left(\Gamma \mathrm{A}_{1}\right)$ does not hold. So $\Gamma \mathrm{BCA}(X)$ is not a Γ - $B C K$-algebra.
Proposition 4.12. Let X be a Γ - $B C H$-algebra X. Then $\Gamma B C A(X) \in \Gamma \mathcal{I}_{c}(X)$ and thus $\Gamma B C A(X)$ is a Γ-subalgebra of X. Furthermore, if $x \in \Gamma B C A(X)$ and $y \in \Gamma B C A(X)^{c}$, then $x \alpha y, y \alpha x \in \Gamma B C A(X)^{c}$ for each $\alpha \in \Gamma$.

Proof. By the definition of $\Gamma \mathrm{BCA}(X), 0 \in \Gamma B C A(X)$. Then the condition $\left(\Gamma I_{1}\right)$ holds. Suppose $x \alpha y, y \in \Gamma \mathrm{BCA}(X)$ for each $\alpha \in \Gamma$. By the definition of $\Gamma \mathrm{BCA}(X)$, we have

$$
0 \beta(x \alpha y)=0,0 \beta y=0 \text { for } \text { each } \beta \in \Gamma
$$

Then $(x \alpha y) \beta x=(x \alpha x) \beta y=0 \beta y=0$. Thus, we get

$$
0=0 \beta(x \alpha y)=[(x \alpha y) \beta x] \beta(x \alpha y)=[(x \alpha y) \beta(x \alpha y)] \beta x=0 \beta x
$$

So $x \in \Gamma \mathrm{BCA}(X)$, i.e., the condition $\left(\Gamma \mathrm{I}_{2}\right)$ holds. Hence $\Gamma \mathrm{BCA}(X) \in \Gamma \mathcal{I}(X)$. Finally, let $x \in \Gamma B C A(X)$. Then clearly, $0 \alpha x=0$. Thus $0 \beta(0 \alpha x)=0 \beta 0=0$. So $0 \alpha x \in \Gamma \mathrm{BCA}(X)$. Hence $Г В \mathrm{BCA}(X) \in \Gamma \mathcal{I}_{c}(X)$.

Now suppose $x \in \Gamma \mathrm{BCA}(X)$ and $y \in \Gamma \mathrm{BCA}(X)^{c}$. Assume that $x \alpha y \in \Gamma \mathrm{BCA}(X)$ for each $\alpha \in \Gamma$. Since $\Gamma \mathrm{BCA}(X) \in \Gamma \mathcal{I}_{c}(X),(x \alpha y) \beta x=0 \beta y \in \Gamma B C A(X)$ for each $\beta \in \Gamma$. Thus $0 \alpha(0 \beta y)=0$, i.e., $0=[0 \alpha(0 \beta y)] \alpha y=0 \alpha y$. So $y \in \Gamma В \mathrm{CA}(X)$. This is a contradiction. Hence $x \alpha y \notin \Gamma В \mathrm{BA}(X)$ for each $\alpha \in \Gamma$. Similarly, $y \alpha x \notin \Gamma В \mathrm{CA}(X)$ for each $\alpha \in \Gamma$.

For a Γ - $B C H$-algebra X, the subset $\Gamma \operatorname{Med}(X)$ of X defined by:

$$
\Gamma M e d(X)=\{x \in X: 0 \alpha(0 \beta x)=x \text { for any } \alpha, \beta \in \Gamma\}
$$

is called the Γ-medial part of X. Each member of $\Gamma \operatorname{Med}(X)$ is called a Γ-medial element of X. It is obvious that 0 is a Γ-medial element of X and then $\Gamma \operatorname{Med}(X) \neq \varnothing$.

Definition 4.13. Let X be a Γ - $B C H$-algebra. Then $\Gamma \operatorname{Med}(X)$ is called the Γ-center of X, if it is a medial Γ-subalgebra of X. In this case, we will denote $\Gamma \operatorname{Med}(X)$ by ΓI_{X}.

It is obvious that ΓI_{X} is a Γ-subalgebra of X.
Example 4.14. Let X be the Γ - $B C H$-algebra given in Example 4.11. Then clearly, $\Gamma I_{X}=\{0,4\}$. Moreover, we can confirm that ΓI_{X} is a Γ-subalebra of X.
Proposition 4.15. Let X be a Γ-BCH-algebra. Then for each $x \in X$ and each $\alpha \in \Gamma$, there is a unique $x_{0} \in \Gamma I_{X}$ such that $x_{0} \alpha x=0$, i.e., $x_{0} \leq x$.
Proof. Let $x \in X$ and let $\alpha, \beta \in \Gamma$. It is clear that $[0 \alpha(0 \beta x)] \alpha x=0$. Let $x_{0}=$ $0 \alpha(0 \beta x)$. Then we have

$$
0 \beta[0 \alpha(0 \beta x)]=[(0 \alpha(0 \beta x)) \alpha x] \beta[0 \alpha(0 \beta x)]=0 \beta x
$$

Thus $0 \alpha[0 \beta(0 \alpha(0 \beta x))]=0 \alpha(0 \beta x)=x_{0}$. So $x_{0} \in \Gamma I_{X}$ and $x_{0} \leq x$.
Now suppose $y_{0} \in \Gamma I_{X}$ such that $y_{0} \leq x$, i.e., $y_{0} \alpha x=0$ for each $\alpha \in \Gamma$. Then $0 \beta y_{0}=\left(y_{0} \alpha x\right) \beta y_{0}=\left(y_{0} \alpha y_{0}\right) \beta x=0 \beta x$. Thus by the hypothesis, $0 \alpha(0 \beta x)=$ $0 \alpha\left(0 \beta y_{0}\right)=y_{0}$. So $y_{0}=x_{0}$. Hence x_{0} is unique.

For each $x \in X$ and any $\alpha, \beta \in \Gamma$, the point $0 \alpha(0 \beta x)=x_{0} \in \Gamma I_{X}$ is called the medial Γ-point or central Γ-point of x and will be denoted by $\Gamma \operatorname{med}(x)$.

The following is an immediate consequence of Proposition 4.15.
Corollary 4.16. Let X be a Γ-BCH-algebra. If $x, y \in X$ such that $x \leq y$ and $x_{0}=\operatorname{\Gamma med}(x), y_{0}=\operatorname{\Gamma med}(y)$, then $x_{0}=y_{0}$.

Remark 4.17. If $x_{0} \in \Gamma I_{X}$ and $y \leq x_{0}$, then clearly, $y=x_{0}$ by Corollary 4.15. Thus each central Γ-point of a $\Gamma-B C H$-algebra X is also a minimal point. Moreover, we have the following identity:

$$
\begin{equation*}
z \alpha\left(z \beta x_{0}\right)=x_{0} \text { for each } z \in X \text { and any } \alpha, \beta \in \Gamma \tag{4.1}
\end{equation*}
$$

Proposition 4.18. Let X be a Γ-BCH-algebra. If for any $x, y \in X$ and each $\alpha \in \Gamma, x_{0}=\Gamma \operatorname{med}(x), y_{0}=\Gamma \operatorname{med}(y)$, then $\Gamma \operatorname{med}(x \alpha y)=x_{0} \alpha y_{0}$, i.e., for any $\alpha, \beta \in \Gamma$,

$$
\begin{equation*}
(x \alpha y)_{0}=0 \alpha[0 \beta(x \alpha y)]=[0 \alpha(0 \beta x)] \alpha[0 \alpha(0 \beta y)]=x_{0} \alpha y_{0} . \tag{4.2}
\end{equation*}
$$

Proof. Suppose $x_{0}=\Gamma \operatorname{med}(x), y_{0}=\Gamma \operatorname{med}(y)$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then clearly, $x_{0}, y_{0} \in \Gamma I_{X}$. Since ΓI_{X} is a subalgebra of $X, x_{0} \alpha y_{0} \in \Gamma I_{X}$. Thus there is $z \in X$ such that $x_{0} \alpha y_{0}=\Gamma \operatorname{med}(z)$. It is sufficient to prove that $z=x \alpha y$, i.e., $x_{0} \alpha y_{0} \leq x \alpha y$. Let $\beta \in \Gamma$. Then we get

$$
\begin{aligned}
\left(x_{0} \alpha y_{0}\right) \beta(x \alpha y) & =[(0 \alpha(0 \beta x)) \alpha(0 \alpha(0 \beta y))] \beta(x \alpha y)\left[\text { Since } x_{0}, y_{0} \in \Gamma I_{X}\right] \\
& =[(0 \alpha(0 \alpha(0 \beta y))) \alpha(0 \beta x)] \beta(x \alpha y)\left[\text { By the axiom }\left(\Gamma A_{6}\right)\right] \\
& =[(0 \beta y) \alpha(0 \beta x)] \beta(x \alpha y)[\text { By Proposition 3.12] } \\
& =[(0 \beta(0 \beta x)) \alpha y] \beta(x \alpha y)\left[\text { By the axiom }\left(\Gamma A_{6}\right)\right] \\
& =\left(x_{0} \alpha y\right) \beta(x \alpha y)\left[\text { Since } x_{0}, y_{0} \in \Gamma I_{X}\right] \\
& =\left[\left(x \alpha\left(x \beta x_{0}\right)\right) \alpha y\right] \beta(x \alpha y)[\text { By }(4.1)] \\
& =\left[(x \alpha y) \alpha\left(x \beta x_{0}\right)\right] \beta(x \alpha y) \\
& =[(x \alpha y) \alpha(x \alpha y)] \beta\left(x \beta x_{0}\right) \\
& =0 \beta\left(x \beta x_{0}\right) \\
& =(x \alpha x) \beta\left(x \beta x_{0}\right) \\
& =\left[x \alpha\left(x \beta x_{0}\right)\right] \beta x \\
& =x_{0} \beta x \\
& =0 .
\end{aligned}
$$

Thus (4.2) holds.
Definition 4.19. Let X be a Γ - $B C H$-algebra and let $x_{0} \in \Gamma I_{X}$. Then the subset of X, denoted by $\Gamma B\left(x_{0}\right)$, defined by:

$$
\Gamma B\left(x_{0}\right)=\left\{x \in X: x_{0} \leq x\right\}=\left\{x \in X: x_{0} \alpha x=0 \text { for each } \alpha \in \Gamma\right\}
$$

is called the Γ-branch of X determined by x_{0}.
Remark 4.20. From Remark 4.17, if $y \leq x_{0}$, then $y=x_{0}$. Thus we can consider x_{0} as the starting point of $\Gamma B\left(x_{0}\right)$. Moreover, $x \in \Gamma B\left(x_{0}\right)$ if and only if $\Gamma \operatorname{med}(x)=x_{0}$. So $x_{0} \in \Gamma B\left(x_{0}\right)$ and hence $\Gamma B\left(x_{0}\right) \neq \varnothing$. Furthermore, we can see that $\Gamma B(0)=$ $\Gamma B C A(X)$.

Example 4.21. Let X be the Γ - $B C H$-algebra given in Example 4.11. Then we can easily check that $\Gamma B(0)=\{0,1,2,3,4\}=\Gamma B C A(X)$. Moreover, $\Gamma B(4)=\{4\}$.

Proposition 4.22 (See Theorem 6, [25]). Let X be a Γ-BCH-algebra and let $x, y \in$ X. Then
(1) $X=\bigcup_{x_{0} \in \Gamma I_{X}} \Gamma B\left(x_{0}\right)$,
(2) $\Gamma B\left(x_{0}\right) \cap \Gamma B\left(y_{0}\right)=\varnothing$ for any $x_{0}, y_{0} \in \Gamma I_{X}$,
(3) $x \alpha y, y \alpha x \in \Gamma B C A(X)$ for each $\alpha \in \Gamma$ if and only if there is $x_{0} \in \Gamma I_{X}$ such that $x, y \in \Gamma B\left(x_{0}\right)$,
(4) $x \alpha y$, $y \alpha x \in \Gamma B C A(X)^{c}$ for each $\alpha \in \Gamma$ if and only if $x \in \Gamma B\left(x_{0}\right), y \in \Gamma B\left(y_{0}\right)$ and $x_{0} \neq y_{0}$,
(5) $x \in \Gamma B\left(x_{0}\right), y \in \Gamma B\left(y_{0}\right)$ imply $x \alpha y \in \Gamma B\left(x_{0} \alpha y_{0}\right)$ for each $\alpha \in \Gamma$.

Proof. (1) It is clear that $\Gamma B\left(x_{0}\right) \subset X$ for each $x_{0} \in \Gamma I_{X}$. Then $\bigcup_{x_{0} \in \Gamma I_{X}} \Gamma B\left(x_{0}\right) \subset$ X. Now let $y \in X$. Then by Proposition 4.15, there is unique $y_{0}=0 \alpha(0 \beta y) \in \Gamma I_{X}$ such that $y_{0} \leq y$ for any $\alpha, \beta \in \Gamma$. Thus $y \in \Gamma B\left(y_{0}\right) \subset \bigcup_{x_{0} \in \Gamma I_{X}} \Gamma B\left(x_{0}\right)$. So $X \subset \bigcup_{x_{0} \in \Gamma I_{X}} \Gamma B\left(x_{0}\right)$. Hence $X=\bigcup_{x_{0} \in \Gamma I_{X}} \Gamma B\left(x_{0}\right)$.
(2) Assume that $\Gamma B\left(x_{0}\right) \cap \Gamma B\left(y_{0}\right) \neq \varnothing$ for some $x_{0}, y_{0} \in \Gamma I_{X}$, say $z \in \Gamma B\left(x_{0}\right) \cap$ $\Gamma B\left(y_{0}\right)$. Then $z \in \Gamma B\left(x_{0}\right.$ and $z \in \Gamma B\left(y_{0}\right.$ such that $z \leq x_{0}$ and $z \leq y_{0}$. Thus $\Gamma \operatorname{med}(z)=\left\{x_{0}, y_{0}\right\}$. This is a contradiction to Proposition 4.15. So $\Gamma B\left(x_{0}\right) \cap$ $\Gamma B\left(y_{0}\right)=\varnothing$.
$(3)(\Rightarrow)$: Suppose $x \alpha y, y \alpha x \in \Gamma B C A(X)$ for each $\alpha \in \Gamma$ and let $x \in \Gamma B\left(x_{0}\right)$, $y \in \Gamma B\left(y_{0}\right)$. Then $x_{0}=\Gamma \operatorname{med}(x), y_{0}=\Gamma \operatorname{med}(y)$. Thus by Proposition 4.18, we have

$$
\Gamma m e d(x \alpha y)=\Gamma m e d(x) \alpha \Gamma \operatorname{med}(y)=x_{0} \alpha y_{0}
$$

and

$$
\Gamma \operatorname{med}(y \alpha x)=\Gamma \operatorname{med}(y) \alpha \Gamma \operatorname{med}(x)=y_{0} \alpha x_{0}
$$

Since $\Gamma B(0)=\Gamma B C A(X)$, by the hypothesis, $x \alpha y, y \alpha x \in \Gamma B(0)$. So $\Gamma \operatorname{med}(x \alpha y)=$ $0=\Gamma$ med $(y \alpha x)$. Since a medial Γ-point is unique, $x_{0} \alpha y_{0}=y_{0} \alpha x_{0}$. Hence $x_{0}=y_{0}$. Therefore $x, y \in \Gamma B\left(x_{0}\right)$ for some $x_{0} \in \Gamma I_{X}$.
(\Leftarrow) : Conversely, suppose there is $x_{0} \in \Gamma I_{X}$ such that $x, y \in \Gamma B\left(x_{0}\right)$. Then clearly, $x_{0} \leq x, x_{0} \leq y$, i.e., $x_{0} \alpha x=0, x_{0} \alpha y=0$ for each $\alpha \in \Gamma$. Thus we get: for each $\beta \in \Gamma$,

$$
0 \beta\left(x \alpha x_{0}\right)=(x \alpha x) \beta\left(x \alpha x_{0}\right)=\left[x \alpha\left(x \alpha x_{0}\right)\right] \beta x=x_{0} \beta x=0
$$

Thus $x \alpha x_{0} \in \Gamma B C A(X)$. Similarly, $y \alpha x_{0} \in \Gamma B C A(X)$. On the other hand, we have

$$
(x \alpha y) \beta\left(x \alpha x_{0}\right)=\left[x \alpha\left(x \alpha x_{0}\right)\right] \beta y=x_{0} \beta y=0 \in \Gamma B C A(X)
$$

Note that $\Gamma B C A(X)$ is a Γ-ideal of X by Proposition 4.12. Since $x \alpha x_{0} \in \Gamma B C A(X)$, $x \alpha y \in \Gamma B C A(X)$. Similarly, $y \alpha x \in \Gamma B C A(X)$. So the sufficient condition holds.
$(4)(\Rightarrow)$: Suppose $x \alpha y, y \alpha x \in \Gamma B C A(X)^{c}$ for each $\alpha \in \Gamma$. Assume that $x, y \in$ $\Gamma B\left(x_{0}\right)$. Then by (3), x $\alpha y, y \alpha x \in \Gamma B C A(X)$. This is a contradiction. Thus the necessary conditions hold.
(\Leftarrow) : Suppose $x \in \Gamma B\left(x_{0}\right), y \in \Gamma B\left(y_{0}\right)$ and $x_{0} \neq y_{0}$. Assume that $x \alpha y \in$ $\Gamma B C A(X)=\Gamma B(0)$ for some $\alpha \in \Gamma$. Then by Proposition 4.18, $\Gamma m e d(x \alpha y)=x_{0} \alpha y_{0}$. Thus $x \alpha y \in \Gamma B\left(x_{0} \alpha y_{0}\right)$. Since $x \alpha y \in \Gamma B(0), x_{0} \alpha y_{0}=0$. So $\left(x_{0} \alpha y_{0}\right) \beta x_{0}=0 \beta x_{0}$, i.e., $0 \beta y_{0}=0 \beta x_{0}$ for some $\beta \in \Gamma$. I follows that $0 \alpha\left(x_{0} \alpha y_{0}\right)=0 \alpha\left(0 \beta x_{0}\right)$. Hence $x_{0}=y_{0}$. This is a contradiction. Therefore $x \alpha y \in \Gamma B C A(X)^{c}$. Similarly, $y \alpha x \in \Gamma B C A(X)^{c}$.
(5) The proof is straightforward.

From Theorem 4.22 (1) and (2), we can see that each Γ - $B C H$-algebra is a disjoint union of its Γ-branches determined by its medial Γ-points.
Theorem 4.23 (See Theorem 7, [25]). Let X be $a \Gamma$ - $B C H$-algebra and let $D \subset \Gamma I_{X}$. Then the followings are equivalent:
(1) $J=\bigcup_{d_{0} \in D} \Gamma B\left(d_{0}\right) \in \Gamma \mathcal{I}_{c}(X)$,
(2) D is a closed Γ-ideal in ΓI_{X}.

Proof. (1) $\Rightarrow(2)$: Suppose $J=\bigcup_{d_{0} \in D} \Gamma B\left(d_{0}\right) \in \Gamma \mathcal{I}(X)$. Since $J \neq \varnothing, \varnothing \neq D \subset$ ΓI_{X}. Let $x_{0} \in D$. Then $x_{0} \in \Gamma B\left(x_{0}\right) \subset \bigcup_{d_{0} \in D} \Gamma B\left(d_{0}\right)=J$. Since $J \in \Gamma \mathcal{I}_{c}(X)$, $0 \alpha x_{0} \in J$ for each $\alpha \in \Gamma$. Thus there is $d_{0,1} \in D$ such that $0 \alpha x_{0} \in \Gamma B\left(d_{0,1}\right)$. So $\Gamma \operatorname{med}\left(0 \alpha x_{0}\right)=d_{0,1}$. Since $0 \alpha x_{0} \in \Gamma I_{X}, \Gamma \operatorname{med}\left(0 \alpha x_{0}\right)=0 \alpha x_{0}$. Hence $0 \alpha x_{0}=d_{0,1} \in$ D.

Now suppose $y_{0} \alpha x_{0}, x_{0} \in D$ for each $\alpha \in \Gamma$. Then $y_{0} \alpha x_{0} \in \Gamma B\left(y_{0} \alpha x_{0}\right) \subset J, x_{0} \in$ $\Gamma B\left(x_{0}\right) \subset J$. Since $J \in \Gamma \mathcal{I}_{c}(X), y_{0} \in J$. Thus there is $d_{0,2} \in D \subset \Gamma I_{X}$ such that $y_{0} \in \Gamma B\left(d_{0,2}\right)$. So $d_{0,2}=\Gamma \operatorname{med}\left(y_{0}\right)=y_{0} \in D$. Hence D is a closed Γ-ideal in ΓI_{X}.
$(2) \Rightarrow(1)$: Conversely, suppose D is a closed Γ-ideal in ΓI_{X}. Then clearly, $D \neq \varnothing$. Thus $J \neq \varnothing$. Let $x \in J$. Then there is a unique $d_{0,3} \in D$ such that $x \in \Gamma B\left(d_{0,3}\right)$. Thus by the hypothesis, $0 \alpha d_{0,3} \in D$. Since $0 \in \Gamma B(0)$ and $x \in \Gamma B\left(d_{0,3}\right)$, by Proposition $4.22(5), 0 \alpha x \in \Gamma B\left(0 \alpha d_{0,3}\right)$. So $0 \alpha x \in \Gamma B\left(0 \alpha d_{0,3}\right) \subset J$. Hence $0 \alpha x \in J$.

Now suppose $y \alpha x, x \in J$ for each $\alpha \in \Gamma$. Then there are unique $d_{0,3}, d_{0,4} \in D$ such that $y \alpha x \in \Gamma B\left(d_{0,3}\right)$ and $x \in \Gamma B\left(d_{0,4}\right)$. Let $\Gamma m e d(y)=y_{0}$. Then we have

$$
d_{0,4}=\Gamma m e d(x)=x_{0}, d_{0,3}=\Gamma \operatorname{med}(y \alpha x)=y_{0} \alpha x_{0}=y_{0} \alpha d_{0,4} .
$$

Thus $\left(y_{0} \alpha d_{0,4}\right) \beta y_{0}=d_{0,3} \beta y_{0}$ for each $\beta \in \Gamma$. Note that $0 \beta d_{0,4}=d_{0,3} \beta y_{0}$. So $d_{0,3} \alpha\left(0 \beta d_{0,4}\right)=0 \beta d_{0,3} \alpha\left(d_{0,3} \beta y_{0}\right)=y_{0}$. Since D is a Γ-ideal of X, D is a Γ-subalgebra of X. Since $0, d_{0,3}, d_{0,4} \in D, y_{0}=d_{0,3} \alpha\left(0 \beta d_{0,4}\right) \in D$. Hence we have

$$
y \in \Gamma B\left(y_{0}\right)=\Gamma B\left(d_{0,3} \alpha\left(0 \beta d_{0,4}\right)\right) \subset \bigcup_{d_{0} \in D} \Gamma B\left(d_{0}\right)=J
$$

Therefore D is a closed Γ-ideal in X.

5. Quotient Γ - $B C H$-algebras

Definition 5.1 (See [21]). Let X, Y be two Γ - $B C H$-algebras. Then a mapping $f: X \rightarrow Y$ is called a Γ-homomorphism, if it satisfies the following condition:

$$
\begin{equation*}
f(x \alpha y)=f(x) \alpha f(y) \text { for any } x, y \in X \text { and each } \alpha \in \Gamma \tag{5.1}
\end{equation*}
$$

In particular, a Γ-homomorphism $f: X \rightarrow X$ is called a Γ-endomorphism on X. We will denote the set of all Γ-endomorphisms on a Γ - $B C H$-algebra X as $\Gamma E n d(X)$.

The subset of X [resp. Y], denoted by $\Gamma k e r(f)[$ resp. $\Gamma \operatorname{Im}(f)]$, defined by:

$$
\Gamma \operatorname{ker}(f)=\{x \in X: f(x)=0\}[\operatorname{resp} . \Gamma \operatorname{Im}(f)=\{f(x): x \in X\}]
$$

is called the Γ-kernel [resp. Γ-image] of f.
Lemma 5.2. Let X be a Γ-BCH-algebra and let $\varphi: X \rightarrow X$ be the mapping defined by: for each $x \in X$ and each $\alpha \in \Gamma$,

$$
\begin{equation*}
\varphi(x)=0 \alpha x \tag{5.2}
\end{equation*}
$$

Then $\varphi \in \Gamma \operatorname{End}(X)$.
Proof. Let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then by Proposition 3.11, we have

$$
\varphi(x \alpha y)=0 \beta(x \alpha y)=(0 \beta x) \alpha(0 \beta x)=\varphi(x) \beta \varphi(y)
$$

Thus φ is a Γ-enomorphism on X. So $\varphi \in \Gamma E n d(X)$.

Proposition 5.3. Let X be a Γ-BCH-algebra and let $f \in \Gamma E n d(X)$. Then
(1) $f(0)=0$,
(2) $f(0 \alpha x)=0 \alpha f(x)$ for each $x \in X$ and each $\alpha \in \Gamma$,
(3) if $x \alpha y=0$, then $f(x) \alpha f(y)=0$ for any $x, y \in X$ and each $\alpha \in \Gamma$,
(4) if A is a Γ-subalgebra of X, then so is $f(A)$,
(5) if $I \in \Gamma \mathcal{I}(X)$, then $f(I) \in \Gamma \mathcal{I}(X)$,
(6) $\Gamma k e r(f) \in \Gamma \mathcal{I}_{c}(X)$.

Proof. The proofs of (1)-(3) are straightforward from Definition 5.1.
(4) Suppose A is a Γ-subalgebra of X and let $x, y \in f(A), \alpha \in \Gamma$. Then there are $a, b \in A$ such that $x=f(a)$ and $y=f(b)$. Thus $x \alpha y=f(a) \alpha f(b)=f(a \alpha b)$. Since A is a Γ-subalgebra of $X, a \alpha b \in A$, i.e., $f(a \alpha b) \in f(A)$. So $x \alpha y \in f(A)$. Hence $f(A)$ is Γ-subalgebra of X.
(5) Suppose $I \in \Gamma \mathcal{I}(X)$. Then clearly, $0 \in f(I)$. Now suppose $x \alpha y, y \in f(I)$ for each $\alpha \in \Gamma$. Then there are $a, b \in I$ such that $x=f(a)$ and $y=f(b)$. Thus $x \alpha y=f(a \alpha b)$. Since $a \alpha b \in I, b \in I$ and $I \in \Gamma \mathcal{I}(X), a \in I$. So $x=f(a) \in f(I)$. Hence $f(I) \in \Gamma \mathcal{I}(X)$.
(6) From (1), it is clear that $0 \in \Gamma k e r(f)$. Suppose $x \alpha y, y \in \Gamma k e r(f)$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then $f(x \alpha y)=f(x) \alpha f(y)=0$ and $f(y)=0$. Thus by Lemma 3.6, $f(x)=0$, i.e., $x \in \Gamma k e r(f)$. So $\Gamma k e r(f) \in \Gamma \mathcal{I}(X)$. Now let $x \in \Gamma k e r(f)$. Then $f(x)=0$. On the other hand, by (2), $f(0 \alpha x)=0 \alpha f(x)$ for each $\alpha \in \Gamma$. Thus $f(0 \alpha x)=0$. So $0 \alpha x \in \Gamma k e r(f)$. Hence $\Gamma k e r(f) \in \Gamma \mathcal{I}_{c}(X)$.

From Lemma 5.2 and Proposition 5.3 (3), we have the following.
Corollary 5.4. Let φ be the Γ-endomorphism on a Γ - $B C H$-algebra X given in Lemma 5.2. Then $\Gamma \operatorname{ker}(\varphi) \in \Gamma \mathcal{I}_{c}(X)$.
Lemma 5.5. Let X be a Γ - $B C H$-algebra and let \sim be the binary relation on X defined as follows: for any $x, y \in X$ and each $\alpha \in \Gamma$,

$$
\begin{equation*}
x \sim y \text { if and only if } x \alpha y, y \alpha x \in \Gamma k e r(\varphi), \text { i.e., } \varphi(x \alpha y)=\varphi(y \alpha x)=0 \tag{5.3}
\end{equation*}
$$

Then \sim is a congruence relation on X. In this case, \sim is called a Γ-congruence relation on X determined by $\Gamma \operatorname{ker}(\varphi)$.

Proof. The proof is straightforward.
For a congruence relation \sim on a Γ - $B C H$-algebra X and each $x \in X$, a subset C_{x} of X defined by

$$
C_{x}=\{y \in X: x \sim y\}=\{y \in X: \varphi(x)=\varphi(y)\}
$$

is called the congruence class in X determined by x with respect to \sim. The set of all congruence classes in X is denoted by $X / \Gamma \operatorname{ker}(\varphi)$ or X / \sim.
Proposition 5.6. Let X be a Γ - $B C H$-algebra and let \sim be a Γ-congruence relation on X determined by by $\Gamma k e r(\varphi)$. We define a mapping $f: X / \sim \times \Gamma \times X / \sim \rightarrow X / \sim$ as follows: for each $\left(C_{x}, \alpha, C_{y}\right) \in X / \sim \times \Gamma \times X / \sim$, $f\left(C_{x}, \alpha, C_{y}\right)=C_{x} \alpha C_{y}=C_{x \alpha y}=\{z \in X: \varphi(z)=\varphi(x \alpha y)\}=\{z \in X: 0 \beta z=0 \beta(x \alpha y)\}$.
Then X / \sim is a Γ - $B C H$-algebra. In this case, X / \sim is called the quotient Γ - $B C H$ algebra of X by $\Gamma \operatorname{ker}(\varphi)$.

Proof. By the definition of φ and Corollary 5.4, it is obvious that f is well-defined and $C_{0}=\Gamma \operatorname{ker}(\varphi)$. Let $x \in X$ and let $\alpha \in \Gamma$. Then $C_{x} \alpha C_{x}=C_{x \alpha x}=C_{0}$. Thus the axiom $\left(\Gamma \mathrm{A}_{4}\right)$ holds.

Let $x, y, z \in X$ and let $\alpha, \beta \in \Gamma$. Then by the axiom $\left(\Gamma \mathrm{A}_{6}\right)$, we have

$$
\left(C_{x} \alpha C_{y}\right) \beta C_{z}=C_{(x \alpha y) \beta z}=C_{x \alpha z) \beta y)}=\left(C_{x} \alpha C_{z}\right) \beta C_{y}
$$

Thus the $\left(\Gamma \mathrm{A}_{6}\right)$ holds.
Finally, suppose $C_{x} \alpha C_{y}=C_{0}=C_{y} \alpha C_{x}$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then $\varphi(x) \alpha \varphi(y)=\varphi(x \alpha y)=0=\varphi(y \alpha x)=\varphi(y) \alpha \varphi(x)$. Thus by the axiom $\left(\Gamma \mathrm{A}_{3}\right)$, $\varphi(x)=\varphi(y)$, i.e., $C_{x}=C_{y}$. So the axiom $\left(\Gamma \mathrm{A}_{3}\right)$ holds. Hence X / \sim is a Γ - $B C H$ algebra.

We define a partial ordering \leq on X / \sim as follows: for any $x, y \in X$ and each $\alpha \in \Gamma$,

$$
C_{x} \leq C_{y} \text { if and only if } C_{x} \alpha C_{y}=C_{0}=\Gamma k e r(\varphi)
$$

Then we have similar consequences of Proposition 3.14.
Proposition 5.7. Let X be a Γ - $B C H$-algebra and let X / \sim be the quotient Γ -BCH-algebra of X by $\Gamma k e r(\varphi)$. Then the followings hold: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,
(1) $C_{x} \leq C_{y}, C_{y} \leq C_{x}$ imply $C_{x}=C_{y}$,
(2) $C_{x} \leq C_{y}$.

Proposition 5.8. If X is an associative Γ - $B C H$-algebra, then so is X / \sim.
Proof. Suppose X is an associative Γ - $B C H$-algebra and let $x, y, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

$$
\begin{aligned}
\left(C_{x} \alpha C_{y}\right) \beta C_{z} & =C_{(x \alpha y) \beta z} \\
& =C_{x \alpha(y \beta z)} \text { [By the hypothesis] } \\
& =C_{x} \alpha\left(C_{y} \beta C_{z}\right) .
\end{aligned}
$$

Thus X / \sim is an associative $\Gamma-B C H$-algebra.
The following is an immediate consequence of Propositions 3.19 and 5.8.
Corollary 5.9. If X is an associative Γ - $B C H$-algebra, then X / \sim is an associative Г-BCI-algebra.

Proposition 5.10. If X is a medial Γ - $B C H$-algebra, then so is X / \sim.
Proof. Suppose X is a medial Γ - $B C H$-algebra and let $x, y, u, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

$$
\begin{aligned}
&\left(C_{x} \alpha C_{y}\right) \beta\left(C_{z} \alpha C_{u}\right)=C_{(x \alpha y) \beta(z \alpha u)} \\
&=C_{(x \alpha z) \beta(y \alpha u)}[\mathrm{By} \text { the hypothesis] } \\
&=\left(C_{x} \alpha C_{z}\right) \beta\left(C_{y} \alpha C_{u}\right)
\end{aligned}
$$

Thus X / \sim is a medial Γ - $B C H$-algebra.
The following is an immediate consequence of Propositions 3.22 and 5.10.
Corollary 5.11. If X is a medial Γ - $B C H$-algebra, then X / \sim is a medial Γ - $B C I$ algebra.

Definition 5.12. Let X, Y be two Γ - $B C H$-algebras. Then a mapping $f: X \rightarrow Y$ is called an isomorphism, if it is bijective and a homomorphism.

Two Γ - $B C H$-algebras are said to be isomorphic, denoted by $X \cong Y$, if there is an isomorphism $f: X \rightarrow Y$.

Let $\Gamma \mathcal{A}$ denote the class of all Γ - $B C H$-algebras.
Proposition 5.13. (1) \cong is an equivalence relation on $\Gamma \mathcal{A}$, i.e.,
(a) $X \cong X$ for each Γ - $B C H$-algebra X,
(b) $X \cong Y$ implies $Y \cong X$ for any Γ - $B C H$-algebras X and Y,
(c) $X \cong Y$ and $Y \cong Z$ imply $X \cong Z$ for any Γ - $B C H$-algebras X, Y and Z.
(2) Let X, Y be two Γ-BCH-algebras. If X is proper and $X \cong Y$, then Y is proper.
Proof. The proof are straightforward.
Let $\boldsymbol{\Gamma}_{\mathbf{B C H A}}$ be the family of the class of all Γ - BCH -algebras and isomorphisms between them.

Remark 5.14. From Proposition 5.13 (1) and (2), we can easily see that the followings hold:
(1) $\boldsymbol{\Gamma}_{\mathbf{B C H A}}$ forms a concrete category,
(2) $\mathbf{P} \boldsymbol{\Gamma}_{\mathbf{B C H A}}$ is a full subcategory of $\boldsymbol{\Gamma}_{\mathbf{B C H A}}$, where $\mathbf{P} \boldsymbol{\Gamma}_{\mathbf{B C H A}}$ denotes the family of the class of all proper Γ - $B C H$-algebras and isomorphisms between them.

6. Topological structures on Γ - $B C H$-algebras

Definition 6.1 ([9]). Let $(X, *, 0)$ be a $B C H$-algebra and let τ be a topology on X. Then $(X, *, \tau)$ is called a topological BCH-algebra (briefly, $T B C H$-algebra), if * : $(X \times X, \tau \times \tau) \rightarrow(X, \tau)$ is continuous, i.e., for any $x, y \in X$ and each $W \in \tau$ with $x * y \in W$, there are $U, V \in \tau$ such that $x \in U, y \in V$ and $U * V \subset W$, where $U * V=\{x * y \in X: x \in U, y \in V\}$ (See [26]).
Definition 6.2. Let X be a Γ - $B C H$-algebra and let τ be a topology on X. Then (X, τ) is called a semitopological Γ-BCH-algebra (briefly, STГ-BCH-algebra), if the mapping $f:(X, \tau) \times \Gamma \times(X, \tau) \rightarrow(X, \tau)$ is continuous at each $(x, \alpha, y) \in X \times \Gamma \times X$, i.e., for each $\alpha \in \Gamma$, any $x, y \in X$ and each $W \in \tau$ with $x \alpha y \in W$, there are $U, V \in \tau$ such that $x \in U, y \in V$ and $U \alpha V \subset W$, where $U \alpha V=\{x \alpha y: x \in U, y \in V\}$.

It is obvious that if X is a STГ- $B C H$-algebra, then X_{α} is a $T B C H$-algebra for each $\alpha \in \Gamma$ in the sense of Definition 6.1.

Example 6.3. (1) Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3\}$ be the Γ - $B C H$-algebra having the the ternary operation defined as the following table:
Consider the topology τ on X defined by:

$$
\tau=\{\varnothing,\{2\},\{3\},\{0,1\},\{0,1,2\},\{0,1,3\}, X\}
$$

Then we can easily confirm that (X, τ) is a STГ- $B C H$-algebra. Moreover, X_{α} and X_{β} are $T B C H$-algebras.
(2) Let $X=\{0,1,2,3\}$ be the Γ - $B C H$-algebra given in Example 3.3 (2). Let us consider the topology τ on X defined by:

$$
\tau=\{\varnothing,\{2\},\{2,3\}, X\}
$$

α	0	1	2	3	β	0	1	2	3	
0	0	0	0	0	0	0	0	0	0	
1	1	0	0	2	1	1	0	0	2	
2	2	2	0	0	2	2	0	0	0	
3	3	3	3	0	3	3	3	3	0	

Let $W=\{2\} \in \tau$. Then clearly, $2 \alpha 0=2 \in\{2\}=W$. Now let $U=\{2\}, V=X \in \tau$. Then clearly, $2 \in U, 0 \in X$. But $U \alpha X=\{0,2\} \not \subset W$. Thus (X, τ) is not a STГBCH -algebra.

Definition 6.4 (See [27]). Let X be a STГ-BCH-algebra and let $a \in X$. Then a mapping $l_{a}: X \rightarrow X$ defined as follows:

$$
l_{a}(x)=a \alpha x \text { for each } x \in X \text { each } \alpha \in \Gamma
$$

is called a left mapping on X. We will denote the set of all left mappings on X by $l(X)$.

Proposition 6.5. Every left mapping on a STT-BCH-algebra X is continuous.
Proof. Let $a, x \in X$, let $l_{a}:(X, \tau) \rightarrow(X, \tau)$ be a left mapping on X and let $W \in \tau$ such that $l_{a}(x)=a * x \in W$. Since X is STГ-BCH-algebra, there are $U, V \in \tau$ such that $a \in U, x \in V$ and $U \alpha V \subset W$ for each $\alpha \in \Gamma$. Then clearly, $l_{a}(V)=a \alpha V \subset U \alpha V \subset W$. Thus l_{a} is continuous.

Definition 6.6 (See [9]). Let X be a Γ - $B C H$-algebra and let $\alpha \in \Gamma$. Then the ternary operation $\bar{\alpha}$ on $l(X)$ as follows: for any $l_{a}, l_{b} \in l(X)$ and each $x \in X$,

$$
\left(l_{a} \bar{\alpha} l_{b}\right)(x)=l_{a}(x) \alpha l_{b}(x), \text { i.e., }\left(l_{a} \bar{\alpha} l_{b}\right)(x)=(a \alpha x) \alpha(b \alpha x)
$$

Example 6.7. Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3\}$ be the Γ - $B C H$-algebra having the the ternary operation defined as the following table:

α	0	1	2	3					
0	0	0	0	0					
1	1	0	0	0					
2	2	2	0	0					
3	3	3	3	0					
Table 6.2						0	1	2	3
0	0	0	0	0					
1	1	0	0	0					
2	2	2	0	0					
3	3	3	0						

Table 6.2
Then clearly, $l(X)=\left\{l_{0}, l_{1}, l_{2}, l_{3}\right\}$. Moreover, we can easily check that $l_{1} \bar{\alpha} l_{2}=l_{0}$ for $l_{1}, l_{2} \in l(X)$.

Proposition 6.8. If X is a Γ - $B C H$-algebra, then $l(X)$ is a Γ - $B C H$-algebra with thee zero element l_{0}.
Proof. Let $l_{a}, l_{b} \in l(X)$, let $x \in X$ and let $\alpha \in \Gamma$. Then we have

$$
\begin{aligned}
\left(l_{a} \bar{\alpha} l_{b}\right)(x) & =(a \alpha x) \alpha(b \alpha x) \text { [By Definition 6.6] } \\
& =(a \alpha b) \alpha z[\text { Since } X \text { is positive implicative] } \\
& =l_{a \alpha b}(x)
\end{aligned}
$$

Thus $l_{a} \bar{\alpha} l_{b}=l_{a \alpha b}$.

Now let $a, b, c \in X$ and let $\alpha, \beta \in \Gamma$. Then by the axiom $\left(\Gamma A_{4}\right)$, we get

$$
l_{a} \bar{\alpha} l_{a}=l_{a \alpha a}=l_{0}
$$

Thus $l(X)$ satisfies the axiom $\left(\Gamma \mathrm{A}_{4}\right)$. On the other hand, by the axiom $\left(\Gamma \mathrm{A}_{6}\right)$, we have

$$
\left(l_{a} \bar{\alpha} l_{b}\right) \bar{\beta} l_{c}=l_{(a \alpha b) \beta c}=l_{(a \alpha c) \beta b}=\left(l_{a} \bar{\alpha} l_{c}\right) \bar{\beta} l_{b} .
$$

So $l(X)$ satisfies the axiom $\left(\Gamma \mathrm{A}_{6}\right)$.
Suppose $l_{a} \bar{\alpha} l_{b}=l_{0}$ and $l_{b} \bar{\alpha} l_{a}=l_{0}$. Then $l_{a \alpha b}=l_{0}$ and $l_{b \alpha a}=l_{0}$. Thus $a \alpha b=0=$ $b \alpha a$. By the axiom $\left(\Gamma \mathrm{A}_{3}\right), a=b$. So $l_{a}=l_{b}$. Hence $l(X)$ satisfies the axiom $\left(\Gamma \mathrm{A}_{3}\right)$. Therefore $l(X)$ is a Γ - $B C H$-algebra.

Definition 6.9 (See [9]). Let X be a Γ - $B C H$-algebra. Then X is called a positive implicative Γ-BCH-algebra, if it satisfies the following condition:
(6.1) $(x \alpha z) \beta(y \alpha z)=(x \alpha y) \beta z$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$.

Example 6.10. Let X be the Γ - $B C H$-algebra given in Example 6.7. Then we can easily see that X is a positive implicative Γ - $B C H$-algebra.
Definition 6.11. A Γ-algebra X is called a positive implicative semitopological Γ $B C H$-algebra (briefly, positive implicative ST - BCH -algebra), if it is a positive implicative Γ - BCH -algebra and a STГ- BCH -algebra.

Definition 6.12. Let X be a Γ - $B C H$-algebra. Then the mapping $\Phi: X \rightarrow l(X)$ defined by: for each $x \in X$,

$$
\Phi(x)=l_{x}
$$

is called the natural mapping on X.
Example 6.13. Let X be the Γ - $B C H$-algebra given in Example 6.10 and consider the topology τ on X defined by:

$$
\tau=\{\varnothing,\{0,1\},\{0,1,2\},\{0,1,3\}, X\}
$$

Then we can easily check that X is a positive implicative STГ- $B C H$-algebra.
For a Γ - $B C H$-algebra X and any subset A of X, the subset l_{A} of $l(X)$ is defined as follows:

$$
l_{A}=\left\{l_{a} \in l(X): a \in A\right\}
$$

It is clear that $\Phi(A)=l_{A}$.
The following is an immediate consequence of Definition 6.12.
Lemma 6.14. Let X be a Γ-BCH-algebra and let $A, B \subset X$. Then the followings hold:
(1) $\Phi(A) \subset \Phi(B)$, i.e., $l_{A} \subset l_{B}$,
(2) $\Phi(A \cup B)=\Phi(A) \cup \Phi(B)$, i.e., $l_{A \cup B}=l_{A} \cup l_{B}$,
(3) $\Phi(A \cap B)=\Phi(A) \cap \Phi(B)$, i.e., $l_{A \cap B}=l_{A} \cap l_{B}$,
(4) $\Phi(A \alpha B)=\Phi(A) \bar{\alpha} \Phi(B)$, i.e., $l_{A \alpha B}=l_{A} \bar{\alpha} l_{B}$ for each $\alpha \in \Gamma$.

Proposition 6.15. If X is a positive implicative Γ - $B C H$-algebra, then the natural mapping Φ is a Γ-isomorphism of Γ - BCH -algebras.

Proof. Suppose X is a positive implicative Γ - $B C H$-algebra. Then clearly, by Proposition 6.9, $l(X)$ is a Γ - $B C H$-algebras with the zero element l_{0}. Let $a, b, x i n X$ and let $\alpha \in \Gamma$. Then we have

$$
\begin{aligned}
\Phi(a \alpha b)(x) & =l_{(a \alpha b)}(x) \\
& =(a \alpha b) \alpha x[\text { By the definition of the left mapping] } \\
& =(a \alpha x) \alpha(b \alpha x) \text { [By Definition 6.8] } \\
& =l_{a} \bar{\alpha} l_{b} \\
& =\Phi(a) \bar{\alpha} \Phi(b) .
\end{aligned}
$$

Thus Φ is a Γ-homomorphism of Γ - $B C H$-algebras. It is obvious that Φ is bijective. So Φ is a Γ-isomorphism.

Proposition 6.16. If (X, τ) is a positive implicative STT-BCH-algebra, then

$$
\tau_{\Phi}=\{\Phi(U) \subset l(X): U \in \tau\}=\left\{l_{U} \subset l(X): U \in \tau\right\}
$$

is a topology on $l(X)$.
In this case, τ_{Φ} is called a left Γ-topology on $l(X)$.
Proof. It is clear that $l(X), \varnothing \in \tau_{\Phi}$. Suppose $A, B \in \tau_{\Phi}$. Then there are $U, V \in \tau$ such that $A=\Phi(U), B=\Phi(V)$. Thus by Lemma 6.14 (3), $A \cap B=\Phi(U \cap V)$ and $U \cap V \in \tau$. So $A \cap B \in \tau_{\Phi}$. Now let $\left(A_{j}\right)_{j \in J}$ be any family of members of τ_{Φ}, where J is an index set. Then for each $j \in J$, there is $U_{j} \in \tau$ such that $A_{j}=\Phi\left(U_{j}\right)$. Thus $\bigcup_{j \in J} U_{j} \in \tau$ and $\bigcup_{j \in J} A_{j}=\bigcup_{j \in J} \Phi\left(U_{j}\right)$ by Lemma 6.14 (2). So $\bigcup_{j \in J} A_{j} \in \tau_{\Phi}$. Hence τ_{Φ} is a topology on $l(X)$.

Example 6.17. Let $\Gamma=\{\alpha, \beta\}$ and let $X=\{0,1,2,3\}$ be the positive implicative $\Gamma-B C H$-algebra having the the ternary operation defined as the following table:

α	0	1	2	3	
0	0	0	0	0	
1	1	0	0	1	
2	2	2	0	2	
3	3	3	3	0	
Table 6.3					
β	0	1	2	3	
0	0	0	0	0	
1	1	0	0	1	
2	2	0	0		
3	3	3	0		

Consider the topology $\tau=\{\varnothing,\{2\},\{3\},\{0,1\},\{2,3\},\{0,1,2\},\{0,1,3\}, X\}$ on X. Note that $l(X)=\left\{l_{0}, l_{1}, l_{2}, l_{3}\right\}$. Then the left Γ-topology τ_{Φ} on $l(X)$ as follows:

$$
\tau_{\Phi}=\left\{\varnothing,\left\{l_{2}\right\},\left\{l_{3\}},\left\{l_{0}, l_{1}\right\},\left\{l_{2}, l_{3}\right\},\left\{l_{0}, l_{1}, l_{2}\right\},\left\{l_{0}, l_{1}, l_{3}\right\}, l(X)\right\}\right.
$$

Proposition 6.18. If (X, τ) is a positive implicative $S T \Gamma-B C H$-algebra, then $\left(l(X), \tau_{\Phi}\right)$ is a STT-BCH-algebra.

In this case, $\left(l(X), \tau_{\Phi}\right)$ is called a left semitopological Γ-BCH-algebra (briefly, LSTГ-BCH-algebra.

Proof. Suppose (X, τ) is a positive implicative STГ- $B C H$-algebra and let $a, b \in X$. Then clearly, $\Phi(a)=l_{a}, \Phi(b)=l_{b} \in l(X)$. Let $\alpha \in \Gamma$ and let $W^{\prime} \in \tau_{\Phi}$ such that $l_{a} \bar{\alpha} l_{b} \in W^{\prime}$. Then there is $W \in \tau$ such that $W^{\prime}=\Phi(W)$. Since X is a STГ- $B C H$ algebra, there are there are $U, V \in \tau$ such that $a \in U, b \in V$ and $U \alpha V \subset W$. Thus $\Phi(U \alpha V)=\Phi(U) \bar{\alpha} \Phi(V) \operatorname{subset} \Phi(W)=W^{\prime}$. Moreover, $\Phi(U), \Phi(V) \in \tau_{\Phi}$
and $l_{a} \in \Phi(U), l_{b} \in \Phi(V)$. So $\bar{\alpha}$ is continuous. Hence $\left(l(X), \tau_{\Phi}\right)$ is a STГ-BCHalgebra.

Proposition 6.19. Let (X, τ) be a positive implicative $S T \Gamma$ - $B C H$-algebra. If $\{0\} \in$ τ, then $\left(l(X), \tau_{\Phi}\right)$ is a discrete space.

Proof. Suppose $\{0\} \in \tau$, let $l_{x} \in l(X)$ and let $\alpha \in \Gamma$. Then clearly, $l_{x} \bar{\alpha} l_{x}=l_{0}$. Since $x \alpha x=0,\{0\} \in \tau$ and X is a positive implicative STГ-BCH-algebra, there are $U, V \in \tau$ such that $x \in U \cap V$ and $U \alpha V \subset\{0\}$. Thus $\Phi(U), \Phi(V) \in \tau_{\Phi}$, $l_{x} \in \Phi(U) \cap \Phi(V)$ and $\Phi(U \cap V)=\Phi(U) \cap \Phi(V) \subset \Phi(\{0\})=\Phi\left(\left\{l_{0}\right\}\right)$. Now let $W=U \cap V$. Then clearly, $\Phi(W \alpha W)=\Phi\left(\left\{l_{0}\right\}\right)$. Thus $\Phi(W)=\Phi\left(\left\{l_{x}\right\}\right)$. Since $W \in \tau, \Phi(W) \in \tau_{\Phi}$. So $\left(l(X), \tau_{\Phi}\right)$ is a discrete space.

Theorem 6.20. Let (X, τ) be a positive implicative STT-BCH-algebra. Then $\{0\}$ is closed in X if and only if X is Hausdorff.

Proof. Suppose $\{0\}$ is closed in X, let $a \neq b \in X$ and let $\alpha \in \Gamma$. Then clearly, either $a \alpha b \neq 0$ or $b \alpha b \neq 0$, say $a \alpha b \neq 0$. Since X is a STГ-BCH-algebra and $\{0\}^{c} \in \tau$, $a \alpha b \in\{0\}^{c}$, there are $U, V \in \tau$ such that $a \in U, b \in V$ and $U \alpha V \subset\{0\}^{c}$. Thus $U \cap V=\varnothing$. So X is Hausdorff.

Conversely, suppose X is Hausdorff and let $a \in\{0\}^{c}$. Then clearly, $a \neq 0$. Thus by the hypothesis, there are $U, V \in \tau$ such that $a \in U_{a}, 0 \in V_{a}$ and $U_{a} \cap V_{a}=\varnothing$, i.e., $0 \notin U_{a}$. So $U_{a} \subset\{0\}^{c}$, i.e., $\{0\}^{c}=\bigcup_{a \in\{0\}^{c}} U_{a} \tau$. Hence $\{0\}$ is closed in X.

The following is an immediate consequence of Lemma 6.14 (3).
Theorem 6.21. Let (X, τ) be a positive implicative $S T \Gamma$ - $B C H$-algebra. Then X is Hausdorff if and only if $\left(l(X), \tau_{\Phi}\right)$ is Hausdorff.

We obtain the following from Theorems 6.20 and 6.21.
Corollary 6.22. Let (X, τ) be a positive implicative $S T \Gamma$ - $B C H$-algebra. Then $\{0\}$ is closed in X if and only if $\left(l(X), \tau_{\Phi}\right)$ is Hausdorff.

7. Conclusions

We have established foundational properties of Γ - BCH -algebras, including the introduction and examination of concepts such as Γ-ideals, the Γ-center, and the Γ-branch, alongside exploring several attributes of quotient Γ - $B C H$-algebras. Furthermore, we have ventured into analyzing some topological characteristics inherent to Γ - BCH -algebras.

Moving forward, our objective will be to advance our study of Γ - $B C H$-algebras within the framework of topological groups, aiming to enrich and refine our understanding of their structural and topological nuances.

Acknowledgements. We wish to thank the reviewers for kind and excellent suggestions that have been incorporated into the paper.

References

[1] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978) 1-26.
[2] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980) 125-130.
[3] Wieslaw A. Dudek, On BCC-algebras, Logique et Analyse 33 (129/130) (1990) 103-111.
[4] Janus Thomys, BCC-Algebras, Chapman \& Hall 2023.
[5] Sun Shin Ahn and Hee Sik Kim, On $Q S$-algebras, Journal of The Chungcheong Mathematical Society 12 (1999) 33-41.
[6] Joseph Neggers, Sun Shin Ahn and Hee Sik Kim, On Q-algebras, IJMMS 27 (12) (2001) 749-757.
[7] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes Kobe Univ. 11 (2) (1983) 313-320.
[8] Hee Sik Kim and Young Hee Kim, On $B E$-algebras, Scientiae Mathematicae Japonicae Online 1 (2006) 1299-1302.
[9] M. Jansi and V. Thiruveni, Topological Structures on BCH-algebras, IJIRSET 6 (12) (2017) 22594-22600.
[10] M. Jansi and V. Thiruveni, Topological BCH-groups, Malaya Journal of Matematik S (1) (2019) 83-85.
[11] Dong Soo Lee and Dong Neun Ryu, Notes on topological BCK-algebras, Scientiae Mathematicae 1 (2) (1998) 231-235.
[12] T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, Iranian Journal of Mathematical Sciences and Informatics 4 (2) (2009) 1-18.
[13] Ramadhan A. Mohammed, Ghazala H. Rasheed and Alias B. Khalaf, On bi-topological BCKalgebras, J. Math. Computer Sci. 28 (2023) 306-315.
[14] Y. B. Jun, X. L. Xin and D. S. Lee, On topological BCI-algebras, Inform. Sci. 116 (1999) 253-261.
[15] A. Hasankhani, H. Saadat and M. M. Zahedi, Some clopen sets in the uniform topology on BCI-algebras, International Journal of Mathematical and Computational Sciences 1 (5) (2007) 244-246.
[16] S. A. Ahn and S. H. Kwon, Topological properties in BCC-algebras, Comm. Korean Math. Soc. 23 (2) (2008) 169-178.
[17] F. R. Setudeh and N. Kouhestani, On (Semi)Topological BCC-algebras, Appl. Appl. Math. 12 (1) (2017) 143-161.
[18] S. Mehrshad and J. Golzarpoor, On topological BE-algebras, Mathematica Moravica 21 (2) (2017) 1-13.
[19] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bull. of Math. 19 (1) (1995) 49-54.
[20] J. P. Kaushik and Moin Khan, On bi- Γ-ideal in Γ-Semirings, Int. J. Contemp. Math. Sciences 3 (2) (2008) 1255-1260.
[21] A. Borumand Saeid, M. Murali Krishna Rao and K. Rajendra Kumar, Г-BCK-algebras, JMMRC 113 (2022) 133-145.
[22] D. L. Shi, J. I. Baek, G. Muhiuddin, S. H. Han, K. Hur, A study on Γ - $B C K$-algebras, Ann. Fuzzy Math. Inform. 26 (32) (2023) 199-219.
[23] I. Ibedou, J. I. Baek, D. L. Shi, M. Cheong, K. Hur, On topological structures on Γ - $B C K$ algebras, To be submitted.
$[24]$ D. L. Shi, J. I. Baek, Samy M. Mostafa, S. H. Han, Kul Hur, Γ - $B C I$-algebras and their application to topology, To be submitted.
[25] M. A. Chaudhry, On BCH-algebras, Math. Japonica 36 (4) (1991) 665-676.
[26] C. S. Hoo, Topological $M V$-algebras, Topology and its Applications 81 (1997) 103-121.
[27] Karamat Hussain Dar and Muhammad Akram, On endomorphisms of $B C H$-algebras, Annals of University of Craiova, Math. Comp. Sci. Ser. 33 (2006) 227-234.

J. I. BAEK (jibaek@wku.ac.kr)

School of Big Data and Financial Statistics, Wonkwang University, Korea

Moin A. AnsARI (maansari@jazanu.edu.sa)
Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 4512, Saudi Arabia

SAMY M. MOSTAFA (samymostafa@yahoo.com)
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
M. CHEONG (poset@kau.ac.kr)

School of Liberal Arts and Sciences, Korea Aerospace University, Korea
K. HUR (kulhur@wku.ac.kr)

Department of Applied Mathematics, Wonkwang University, Korea

